
International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1241

Load Speed Problems of Web Resources on the
Client Side: Classification and Methods of

optimization
Osama Ahmad Salim Safarini

Computer Engineering Department, College of computers and Information Technology,University of Tabuk,, Tabuk 71491,

Saudi Arabia

Abstract— This article is concerned about client side
issues of web resources load process related to user
agents (browsers) behavior. a lot of modern problems
such as improving global availability and reducing
bandwidth, the main problem they address is latency: the
amount of time it takes for the host server to receive,
process, and deliver on a request for a page
resource (images, css files, etc.). latency depends largely
on how far away the user is from the server, and it’s
compounded by the number of resources a web page
contains; current load algorithms are investigated and all
known solutions with their area or efficiency are
explained. We have described four main optimization
methods.
Keywords— optimization of the web page load time,
client performance, client optimization approaches.

I. INTRODUCTION
If we talk about the problems related to client
performance, you should immediately refer to the
ambiguity approach to solving any problem that lies in
this area. When creating any external module (page or
part thereof) the client architect has to make a choice.
Either on this page will use its own style sheet (then to
speed up loading it possible to include in the final HTML-
document). Or if it will be used by the general style file,
then it is necessary not to forget about caching and
estimate the number of regular users.
Compromises pursue architect everywhere: to unite all the
files in one or divided into several independent modules?
Cache whether individual resource files needed to display
the page, or to incorporate them into the document itself?
Which set of browsers should be maintained, and what
techniques to use while? What palette size and the degree
of compression for images, and how best to break a
complicated pattern into several components? For which
pages may use methods of conducting resource loading
after loading the page itself, and which need for pre-
loading?

The questions are very much, and most of them are tied to
the basic knowledge of client optimization. In our paper
we tried to answer and explain some of these questions.
We provided four key points of the main problem areas
on page load and we described all the optimization
methods related to those problem areas.

II. CLIENT ARCHITECTURE AND HOW IT
DIFFERS FROM THE SERVER

The importance of client architecture currently cannot be
overstated, because the vast majority of issues to
accelerate the loading of web resources are associated
with the client part. In an effort to create a convenient,
fast and cross-browser Web resource modern architect
client needs to solve many problems, coherent vision of
the customer with the convenience for the users and be
sure to take into account, how a web-based resource (or a
portal) will be developed in the future. According to last
year's survey [2] conducted by Yahoo! engineers in the
field of user interfaces, 95% of the time when loading a
Web resource associated with the delays on the side of the
end user. And only 5% are "server" component (which
includes, in addition to waiting for a response, in fact,
from the server, and more time on the DNS-request time
to establish TCP / IP-connections and a number of other
costs). That is why the optimization of the page load time
is one of the top priorities.
In addition, each problematic issue, whether the use of
standards to fit on the page, the combination of
background images to reduce the number of requests to
the server, the use of JavaScript-logic on the page should
be decided primarily on the basis not only of the actual
technical specifications, but also the best performance on
the browser side.
Let's look at the kind of problems you may encounter
when you create high-performance web resources, and
how they are best addressed.
Problem 1: Poorly Written Code
Poorly written code can lead to a host of web application
issues including inefficient algorithms, memory leaks and

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1242

application deadlocks. Old versions of software, or
integrated legacy systems can also drag performance
down. Make sure your teams are using all the tools at
their disposal – from automated tools like profilers to best
programming practices like code reviews.
Problem 2: Unoptimized Databases
An optimized database allows for the highest levels of
security and performance, while an unoptimized database
brings can destroy a production application. Missing
indexes slow down the performance of SQL queries
causing, which can drag down an entire site. Be sure to
use scripts and file statistics to check for any inefficient
queries.
Problem 3: Unmanaged Growth of Data
Data systems tend to degrade over time. Developing a
plan to manage and monitor data as it grows is
indispensable to your web performance success. The first
step is deciding who is accountable for data growth in
your business. From there, your team will need to
research and determine the appropriate storage for your
data needs. Look at all your options, from databases to
caches to more sophisticated layered storage solutions.
Problem 4: Traffic Spikes
We generally think of increased traffic as a good thing.
However, anyone who has experienced major traffic
spikes after a marketing promotion or viral video knows
what can happen when you aren’t properly prepared for
them. Planning ahead is key, and set up an early warning
system through simulated user monitoring systems
like NeoSense. That way, you’ll see when traffic is
impacting transactions before your users have a bad
experience.
Problem 5: Poor Load Distribution
Poor load distribution can cause slow response times by
incorrectly assigning new site visitors to bogged-down
servers instead of others with cycles to spare. If too many
people are on the same server, they’re going to experience
problems, even if the overall system is well under
capacity. It is imperative to test with a product
like NeoLoad as it will help you find any infrastructural
weaknesses at hand.
Problem 6: Default Configurations
Systems must be properly tuned. While default
configurations make it easy to get new components up
and running, they’re not always appropriate for your web
applications in a live production environment. Every
setting should be checked: review thread counts, allocated
memory and permissions. Confirm that all configuration
parameters suit the demands placed on your web
application, and aren’t the way they are just out of
convenience.

Problem 7: DNS, Firewall, and Network Connectivity
DNS queries make up the majority of web traffic. That’s
why a DNS issue can cause so much trouble, preventing
visitors from accessing your site and resulting in errors,
404s and incorrect pathways. Likewise, network
connectivity and firewall efficiency are crucial for access
and productivity. Use DNS monitoring safeguards to
pinpoint problems at hand. Also, revise switches, check
VLAN tags, and distribute tasks between servers. These
are just a few ways to troubleshoot these types of
performance issues.
Problem 8: Troublesome Third-Party Services
If you rely on third-party services, you know that some
slowdowns are out of your control. Who hasn’t
experienced a stalled page, waiting to load an ad from
someone else’s ad server. If your users are experiencing
problems, it’s essential to determine if the problem is on
your side or that of the third-party. If you decide to
continue using the third-party service, look at making
some design changes to protect your site from at least
some of the effects of a third-party service issue. Finally,
make sure your company and the off-service provider are
clear on performance guarantees.
Problem 9: Shared Resources and Virtual Machines
Just about every web application today relies on virtual
machines for everything from scalability to management
to system recovery. However, sometimes the way these
virtual systems are organized – hundreds of VMs on a
single physical server – can result in problems where one
bogged-down system affects all the others. After all,
contention is bound to happen. Monitor systems closely
so that if one VM is causing problems, you can deal with
the side-effects quickly.
Problem 10: The Domino Effect
Finally, make sure you realize that a failure in one
location may affect other spots in ways you wouldn’t
necessarily think of. Problems compound upon
themselves, making it hard to determine what is really
going on. You’ve got to train your team to find root
causes, backtracing through problems to find the real
culprit. You may even want to think about mimicking
Netflix’s Chaos Monkey strategy, which introduces
abnormal errors in the network to push the boundaries of
resiliency and recovery.

2.1 Time Aspects of Loading a Web Page
The corresponding study demonstrated that user irritation
is greatly increased if the page loading speed exceeds 8-
10 seconds without any user notification about the boot
process [3]. Recent work in this area has shown that users
with broadband access are even less tolerant of delays at
loading web pages than with the users with a narrower
channel. The survey, conducted by Jupiter Research [4], it
was found that 33% of the user-speed connections do not

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1243

want to wait for more than 4 seconds when the page
loads, while 43% of users do not wait more than 6
seconds.
In a study conducted in 2004, Fiona Nah found that the
tolerant waiting time (TWT) for broken links (without
feedback) is between 5 and 8 seconds. [5]. With the
addition of notifying the user of the boot process
(feedback), for example, load indicator, TWT has
increased to 38 seconds. The distribution of TWT to go to
retry broken links was maximum in the region of 2-3
seconds (without feedback). Nah concluded that TWT
web users have a maximum of about 2 seconds. Taking
into account the desire to visit the user web resource
repeatedly, Dennis Galletta and others showed that the
curve is smoothed at 4 seconds or more and goes to zero
in the region of 8 seconds or more [6].

III. THE MAIN PROBLEM AREAS ON PAGE

LOAD ANY WEB RESOURCE
The main problem areas on page load any web resource
can be divided into four key points:
1. Preloading - the appearance of pages in the user's
browser. After a moment of waiting at the entrance to the
download web resource in the user's browser page
appears drawn. At this point, likely missing page
drawings and may not be fully functioning JavaScript-
logic.
2. Interactive loading - appearance interactivity loaded
web page. Typically, the whole logic of client interaction
is available immediately after the initial page load (stage
1). however, in some cases (for them speech will be a
little further) support this logic a bit delayed in time from
the appearance of the main picture in the user's browser.
3. Full page loading - Page Web resource appeared fully
in the browser, for it presents all the declared information,
and it is ready for further user action.
4. Post-loading pages - At this stage, fully loaded page
may be (in the invisible to the user mode) to carry out the
loading and caching some resources or components. They
may require the user when switching to other page of this
web site, or to display (but not the logic functioning) of
any interactive effects. For the majority of Web resources
at this time is to distinguish only preload (which is
enabled by default an interactive boot) and a full load of
the page. Post-loading, unfortunately, it is now used very
little.
Optimize the speed of loading web pages focused on two
key aspects: acceleration of reload and accelerate the
main load. All basic techniques are focused on this,
because these two stages are perceived by the user as a
"loading" web page.

3.1 The Effectiveness of the Main optimization Methods
If describe all the optimization methods, they are divided
into four main groups:
 1. Reducing the amount of data provided (this includes
the use of compression algorithms and corresponding
formats for images).
 2. Caching (using paired client-server headers to reduce
the transmission time information when it is maintaining
its relevance).
3. Fewer resources (various methods of combining
downloadable files).
4. "Visual" optimization (which includes the separation of
algorithms boot process into 4 stages for maximum
acceleration loading the main stages, as well as a number
of methods associated with parallel streams of loading).
By reducing the amount of data will be the most efficient
archiving (gzip / deflate) on the server. Practically all
modern Internet industry giants are now issued in a text
file gzip-format (this GoogLe, and Yahoo !, and Yandex).
There are certain problems with the perception of these
files on some browsers; however, almost all of them at
the moment can be overcome. This approach is the easiest
to use, and therefore has the greatest efficiency: minimum
action leads to at least the maximum result.
Caching does not require deep knowledge of network
protocols and the subtleties of imposition, but the ability
(when large quantities of regular visitors) have a
significant impact on the speed of loading pages
specifically for them.
Further efficiency is generally used as a text association
(.html, .css, .js) files and graphics used for decoration
purposes. Text files combine very simple, and we can
save a considerable amount of time it takes to additional
requests to the server. By combining and image files are
commonly used technologies CSS Sprites (Image Map),
which is not easy to automate, but large numbers of icons
on a page, it can greatly speed up the load.
The methods of "visual" optimization can be attributed as
an extremal optimization: When all related files are
included in the final - and load distribution for loading
files on multiple servers. On the real-time display of the
page, these actions do not affect much, in some cases,
their implementation involves considerable difficulties.
However, in the case of high load, even a few
milliseconds can affect significant (in an absolute sense)
increase profits.
The main criteria that should determine which methods
and how much should be applied, of course, is the
audience resource. For each Web resource can identify
several specific groups of pages that are visited by one or
another type of audience. The first group includes Web
pages that new users visited every time. This special
promotional page, whose task is to direct sales of the

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1244

product. This is the page of ads that users should see one,
a maximum of two times. Etc. Followers of such pages by
99.9% consists of new users. Therefore, for them it is
necessary to apply methods that reduce, first of all,
number of appeals to the server to display the page:
combining files and extreme optimization.
The second group can be attributed pages audience which
often varies; however, part of it can view content an
unlimited number of times. For these pages, you can
select the characteristic core of regular visitors; however,
it is not more than 30-40% of the total. Most web
resources that "live" in the search traffic, is a remarkable
example, fully correspond to this group. For these pages,
first and foremost, is to consider methods of reducing the
number of requests (CSS Sprites), the possible
minimization of all the text files (HTML, CSS,
JavaScript). However, the use of caching is justified in
this case to a lesser extent as to reduce the load time of
the page is not so much (if taking a weighted average)
than, e.g., parallel queries. Finally, the third group
includes all the remaining pages, namely those which the
audience is more constant (a specific number of
parameters business efficiency of various audience groups
should be considered, however, the characteristic values
are - that's 30% of regular users of the resource). In this
group, the most effective will, of course, caching and
optimizing the speed of the JavaScript and Flash-
animation - in fact it will "eat" most of the time.
3.2 Compression Methods

The main tools for reducing the amount of data are
various minimizers and Obfuscators (for JavaScript-files),
archiving, and also a number of utilities to reduce the size
of images. Let's take them in order. As shown by the
testing means compressing CSS, best copes with this task
the project CSS Tidy [8] (about the same level with him
is YUI Compressor [9]), which, together with additional
archiving files, you can get a win up to 85% [10] .

Fig. 1: Dependence winnings to compress CSS-files using

a variety of tools and archiving

For the JavaScript-files, the situation is somewhat more
interesting. [11]. If you apply the archive, it is best to use

the YUI Compressor [9], as it is, on average, in this case,
compresses better. If archiving for JavaScript-files cannot
be used, the leader in compression is Dean Edwards
Packer [12]; however, it introduces extra costs for his
"decompression". Studies have shown that for users who
will be mainly load JavaScript from the cache, you should
use compression without obfuscation.

Fig. 2:Dependence winnings for compressing JavaScript-

files using a variety of tools and archiving

Using archiving through mod_gzip or mod_deflate for a
web server by Apache (and corresponding modules for
other web servers) can significantly reduce the size of
uploaded files. However, in case of very rapid channel
users (e.g., local resource), and the limited resources of
the server (high specific load on the creation of the page)
would be wiser not to use compression [13]. Also worth
for archived files to add the appropriate headers (Cache-
Control: private), to avoid a number of problems with
local caching proxy server. To archive CSS- and
JavaScript-files is also necessary to exclude Safari (for
Windows-based platforms) and Konqueror from those
browsers that can send gzip-files: these browsers until
recently, experts were not able to recognize them
correctly.

Fig. 3: Example configuration of Apache web server to

enable compression of CSS-and JavaScript-files

For most graphic elements it is recommended to use the
format of PNG, as it is more economical than GIF [14] in
the diagrams and drawings with a limited color palette.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1245

However, for small images GIF-format can be better.
Currently PNG-images are supported, practically by all
browsers.
Now there is a problem with alpha channel in Internet
Explorer (which promise to correct in version 8),
however, version 6 and 7 it can be solved through the
filter ImageAlphaLoader, which allows to use translucent,
practically in full size. In case of problems with the
coincidence of color (again, in Internet Explorer) is
recommended to remove from the image gAMA-Chunk
responsible for transparency (in this case, to obtain a
transparent image with matching flowers in Internet
Explorer does not work). This can also help a number of
utilities that reduce the size of PNG-images: for example,
pngcrush. To reduce the size of JPEG image-jpegtran
utility can be applied, which does not affect the color
image data, and removes comments and other meta-data.
For animated images is to use either the GIF-image with
multiple frames, or DHTML-animation (using
JavaScript0 logic to change PNG- or JPEG-images).
Animated PNG-images are not supported by browsers
[14].
After using all of the methods the final page size can be
reduced by 30-80%. However, if the Web resource is
loaded more than 10 seconds, this may not be enough.
3.3 Methods For Combining Files

Each request from a user's browser to the server is rather
resource-intensive operation. Even if you have an open
connection to the server browser still has to pass (and get)
the relevant FTP- or HTTP-headers (which only increase
the actual amount of transmitted information). In addition,
HTTP / 1.1 specification browser does not have the right
to open more than 4 connections to one server (in the past
this was due to a heavy load on the server when a large
number of concurrent requests, however, at present the
browsers, of course, increase this number to 6 -10).
Therefore, each request must wait for the next stage in its
general stream, before it is processed and transmitted to
the server.
With a significant number of files that are required to
display the page on the web-site, this can result in a
significant amount of time waiting for the user. For
consideration of methods to accelerate the process in this
area should refer to the above stages of loading and to
focus on the possible transfer of files from the first stage
(preload) to the second, third or fourth stage.
Unfortunately, for correct display of the browser page it is
necessary to load all the files of styles (CSS), which are
listed on it. To speed up the process of preloading is
necessary to combine all the files (for different devices
can be combined using the selectormedia) or even (with a
small amount of their fickle audience or web resource) to
place them directly in the HTML-file. In addition, the call

of CSS-file on the page should be before the call to any
other files (for example, favicon.ico).
The survey showed [15], to accelerate the loading HTML-
and JavaScript-files optimally will unite them in a single
file (to establish multiple connections consumed too
many resources compared to the speed of information
transfer). The most popular technique for combining
images is CSS Sprites [16] (or CSS Image Map), when
the display of several (tens or even hundreds) of images
using one resource file. It gives a considerable gain in
loading speed when using animation effects (for example,
changing an image when you hover the mouse) as well as
with a large number of icons on the page. When using this
technique, the background image is positioned using style
rules that are actually "cut" him from the general resource
file.
The main recommendations to create resource files for
CSS Sprites are the following:
1. Breaking all the images on 5 major groups (not

recommended for use in an image file of more than
2 groups):
1.1. Images, repeated in all directions

(corresponding CSS-rule repeat).
1.2. Images, repeated horizontally (usually repeat-

x).
1.3. Images repeated vertically (typically repeat-y).
1.4. Images that are not repeated (typically no-

repeat).
1.5. And animated images.

2. The file size must be no more than 10-20 KB
3. There should be close association of the color image

If you have a page displays a lot of small images,
you may want to use the technique Image Map, in
order to reduce their number.

3.4 Caching
The main technology to accelerate loading pages for
regular visitors is caching, which can reduce the number
of requests to the server to display the page to a minimum
(ideally to zero). It is worth remembering correctly
configured header Cache-Control. To clear the cache, you
can always use an additional parameter in the GET-
request to a resource that will cause the server to take the
same physical file, and the client browser request the file
and save it under a new name. For static resources is quite
a long time to expose the cache (it is possible to
experiment with the values of the month), for other files,
this value must be equal to the average time change or
absent (for HTML-files, for example).

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1246

Fig. 4:Adding caching headers for static files is capable
of ten times to reduce the number of requests when you

reload the page

As an additional caching argument, you can use unique
resource identifiers (ETag). It allows the server to not
give the file again, even with ending time caching, and
simply extend it. However, there are some problems with
the distribution of files on different physical servers and
configure them identical ETag, but rather, it refers to the
already very large systems. As Alternative the ETag, you
can use header Last-Modified.
3.5 Parallel Loading

To reduce the proportion of time for a response from the
server when loading a large number of files load can be
split into multiple streams (servers) [17]. The servers
themselves for that purpose (quick-impact static
resources) better customize under the "light" environment
(for example, nginx). As a balancing parameter can be
considered as the distribution by geography (eg, clusters
in the US, Europe, Asia), and load (pool of available
servers is determined each time the page is loaded).
Also the use of balancing client to achieve the same
effect. The main problems it is worth noting the need to
create a hash function of the file name so the same file is
loaded with only one server, otherwise the browser will
ask the file from a server mirror, until the score cache all
copies from all the distributed servers. Also it is necessary
to confine 4 hosts (for a large number of files), for a small
number (15-25) should be used no more than 3. 2 host
used wisely, only if the number of files exceeds 10
because of the additional costs for name recognition in the
DNS-table [2].
3.6 Javascript Optimization

It is possible to load required JavaScript-files to display
the page, in fact, after loading it. However, there are still a
couple of nuances. For example, a web-based resource in
this should be fully functional without JavaScript (must
be carried out jumps by the links, the initial appearance of
the page should be formed on the server). This will
increase of indexable the resource by the search engines
and will protect those users who have your JavaScript-
files do not work for one reason or another (mobile or
outdated browsers without JavaScript, and others.). It
should rely more on CSS capabilities to create animation
effects. You can not display the page in a browser better
than the browser itself, so you should leave all the hard
work on the drawing page for internal engine (this refers
to the animation effects when you hover over the button,
layout changes when you resize the window, etc.). CSS-

engine, on average, is working faster than JavaScript.
Also avoid using CSS-expressions or optimize them so
that they performed only once on the page [18].
When optimizing JavaScript-machine interaction with the
browser should also update the DOM-tree with large
pieces. All DOM-handling resource-intensive, it is a
complete analogy to a database server applications. The
fewer produced work with DOM, the faster will be
performed JavaScript.
It is necessary to make individual comments about the
event handlers: their quantity should be kept to a
minimum. Ideally, you should use a single on click for the
body and already processing source produced action. If
you need less than global effects - you can just be limited
to one handler on the block, which lies in the desired area.
A large number of event handlers (who sometimes forget
to remove when changing the containing HTML-code)
leads to memory leaks in Internet Explorer.
Also, it may be advisable to cache global variables in the
local (however, there may be nuances, especially with the
chain of function calls), avoid using eval and setTimeout /
setInterval (who perform eval on the argument of a
string). Instead, you can use anonymous functions. In the
implementation of heavy calculations (for example,
additional data loading from the server or sorting large
arrays) is worth to update the user interface, so that he
knew that performed some action, and could wait.
However, the most basic thing here is not to overdo it
with notifications: after each update of the page takes
some time, and an overhead outgoings because it can be a
lot more "useful" time.
3.7 Preloading, Interactive And Full Load

The above techniques will help to greatly accelerate the
step of preloading. However, in the presence of a
significant number of JavaScript-files, providing
animation effects or interaction with users, full load can
be significantly delayed in time.
To prevent this, the most common approach is the
issuance of an interactive boot (actually, all external
JavaScript-files) to preload (with a small amount of code
it can be fully included in the source HTML) or post-load
(using the combined event window.onload [19]).
As usual, the main criterion will be the audience of web-
resource: to optimize page load, it is orienting on its
characteristics (average access speed, a typical browser
and others.). It should be guided by the following
approaches:
1. For constantly updated the audience will be most
appropriate to include all files in the source HTML
(image - using the combined data: URL approach [20]).
2. If the audience is mixed, it is recommended that
about half the size of the page is left in the HTML-file,

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1247

and the other half divided into several (4-8) files, which
can then be cached.
3. With permanent audience should reduce the size
of a HTML-file to a minimum and configure caching
headers oriented for a long time.
4. loading all JavaScript files should be made in a
fourth step (post-load), thereby speeding up the display of
pages in the third stage. Ideally, the second step
(interactive load) should not exist: users for some time
after the page loads "mastered" on it, get used to the
elements of navigation, so at this waiting time, you can
load invisibly for users all the interactive elements.
5. For acceleration of loading the necessary
background images, you can boost their calls through the
dynamic creation of images in the respective head page
area (new Image method in JavaScript).
3.8 Non-Blocking Javascript Load

As noted above, the load-JavaScript code on the page
should be removed from a number of factors affecting the
course of the main (before step 3) loading. Why is this
done? JavaScript-code can contain calls document.write
(which change the structure of the DOM-tree of the
document) or location.href (that redirect to another page).
Your browser does not have the right to display the page
without having analyzed all the JavaScript-code, so a
large number of calls to these files, taking place in the
second stage can significantly slow down the loading
[21].
If the total size of the JavaScript-code is less than 5% of
the total HTML- / CSS-code, it should be included in the
latter (located as close to the closing tag body). If
JavaScript is a single monolithic block, which provides an
interactive operation of the entire page, with its size is
large enough for the first case, it is necessary to make this
boot code (as a single external file) in the post-loading.
If there are several not related to each other JavaScript-
parts they can be called in the post-boot independently (in
a few streams through the creation of a dynamic script
node in the head-area of the page), which will increase the
speed of their load. This applies in particular to the
various counters [22].
If the JavaScript on a page is a certain library, which is
then used by different applications, and the same library
is used on most pages of the web resource, and its using
applications vary from page to page, in this case it is
necessary to arrange loading by chain. First, in the post-
startup is called the library file itself, then it loads all the
necessary applications on this page. It refers to the use of
most modern JavaScript-frameworks - jQuery, Prototype,
Mootools, Ext2, Dojo, YUI.
All of the above methods will help avoid delays in
loading related to the use of any JavaScript-code.

IV. CONCLUSION
Summarizing all the above, we can say with firmness:
really fast Web resources exist, and create them is not as
difficult as it may seem at first glance. The most
important thing in the use of client optimization
approaches - is to understand at what stage of loading will
be affected by this or that action, seeking to maximally
speed up the preload page and its basic load.
Algorithms “optimization methods” described above are
applicable almost in any situation. It showed extensive
practical use for a wide range of tasks: optimization of
highly loaded pages [23], the acceleration of the
JavaScript-logic on the page [24] and optimization
analysis of inhomogeneous Web resources [25].
As practice shows, loading medium Web resource can be
accelerated approximately 2-3 times, and all this is
achieved by very simple steps: in fact, all that the user
does not need right now (right after the preload) can be
loaded when displaying the page, or even after the display
(within the first 100-500 milliseconds) until the user has
not yet committed any active action.

REFERENCES
[1] “Average Web Page Size Triples Since 2003” // Web

Site Optimization. Available
http://www.websiteoptimization.com/speed/tweak/a
verage-web-page/.

[2] “Best Practices for Speeding Up Your Web Site” //
Yahoo!. -Available
http://developer.yahoo.com/performance/rules.html.

[3] Bouch, A., Kuchinsky, A., Bhatti, N. , “Quality is in
the Eye of the Beholder: Meeting Users'
Requirements for Internet Quality of Service” //
CHI. - The Hague, The Netherlands : [BN], 2000 r..

[4] “Retail Web Site Performance: Consumer Reaction
to a Poor Online Shopping Experience” // Akamai. -
2006 r..

[5] Nah, F., “A study on tolerable waiting time: how
long are Web users willing to wait?” // Behaviour. -
[BM] : Information Technology, 2004 r.. - 23 : Т. 3.

[6] Galletta, D., Henry, R., McCoy, S., Polak, P., “Web
Site Delays: How Tolerant are Users?” // Journal of
the Association for Information Systems. - 5 : Т. 1.

[7] “The Psychology of Web Performance” // Web Site
Optimization. - Available
http://www.websiteoptimization.com/speed/tweak/p
sychology-web-performance/.

[8] “CSS Tidy” // Soureforge. – Available:
http://csstidy.sourceforge.net/.

[9] “YUI Compressor” // Yahoo!. - Available:
http://developer.yahoo.com/compressor/.

International Journal of Advanced Engineering, Management and Science (IJAEMS) [Vol-2, Issue-8, Aug- 2016]

Infogain Publication (Infogainpublication.com) ISSN : 2454-1311

www.ijaems.com Page | 1248

[10] «CSS: All about compression» // Web Optimizator.
- Available: http://webo.in/articles/habrahabr/14-
minifing-css/.

[11] «Javascript: compress or no compress?» // Web
Optimizator. - Available:
http://webo.in/articles/habrahabr/11-minifing-
javascript/.

[12] “Dean Edwards Packer” // Dean Edwards. -
Available: http://dean.edwards.name/packer/.

[13] "The influence of the level of gzip compression on
server performance" // Web Optimizator. -
Available: http://webo.in/articles/habrahabr/33-gzip-
level-tool/.

[14] “Replace GIF with PNG Images” // Web Site
Optimization. - Available:
http://www.websiteoptimization.com/speed/tweak/p
ng/.

[15] « Carefully cut the flow » // Web Optimizator. -
Available: http://webo.in/articles/habrahabr/48-flow-
slices-optimization/.

[16] «CSS Sprites: all that you know, but were afraid to
ask » // Web Optimizator. - Available:
http://webo.in/articles/habrahabr/08-all-about-css-
sprites/.

[17] “Optimize Parallel Downloads to Minimize Object
Overhead” // Web Site Optimization. - Available:
http://www.websiteoptimization.com/speed/tweak/p
arallel/.

[18] « Practical JS: optimizing CSS expressions» // Web
Optimizator. - Available:
http://webo.in/articles/habrahabr/10-css-expressions-
optimization/.

[19] « Practical JS: “postponed” loading » // Web
Optimizator. - Available:
http://webo.in/articles/habrahabr/05-delayed-
loading/.

[20] « Cross-browser usage data:URL» // Web
Optimizator. - Available:
http://webo.in/articles/habrahabr/46-cross-browser-
data-url/.

[21] “Non-blocking JavaScript Downloads” // Yahoo!
User Interfacses Blog. - Available:
http://yuiblog.com/blog/2008/07/22/non-blocking-
scripts/.

[22] « We accelerate counters from myth to reality » //
Web Optimizator. - Available:
http://webo.in/articles/habrahabr/61-counters-
optimization/.

[23] « Optimize pages often show » // Web Optimizator.
- Available:
http://webo.in/articles/clientside2007/common-
pages-optimization/.

[24] “High Performance Ajax Applications” // Julien
Lecompte Blog. Available:
http://www.julienlecomte.net/blog/2007/12/39/.

[25] « Optimization Results » // Web Optimizator. -
Available: http://webo.in/about/results/.

